

Web based Pattern Mining and Matching
Approach to Question Answering

Dell Zhang1,2
1 Department of Computer Science

School of Computing
S15-05-24, 3 Science Drive 2

National University of Singapore
Singapore 117543

2 Singapore-MIT Alliance
E4-04-10, 4 Engineering Drive 3

Singapore 117576
+65-68744251
dell.z@ieee.org

Wee Sun Lee1,2
1 Department of Computer Science

School of Computing
S15-05-24, 3 Science Drive 2

National University of Singapore
Singapore 117543

2 Singapore-MIT Alliance
E4-04-10, 4 Engineering Drive 3

Singapore 117576
+65-68744526

leews@comp.nus.edu.sg

Abstract

We describe herein a Web based pattern mining and matching approach to question answering. For each
type of questions, a lot of textual patterns can be learned from the Web automatically, using the TREC
QA track data as training examples. These textual patterns are assessed by the concepts of support and
confidence, which are borrowed from the data mining community. Given a new unseen question, these
textual patterns can be utilized to extract and rank the plausible answers on the Web. The performance
of this approach has been evaluated also by the TREC QA track data.

1 Introduction
What a current information retrieval system or search engine can do is just “document retrieval”, i.e.,
given some keywords it only returns the relevant documents that contain the keywords. However, what a
user really wants is often a precise answer to a question. TREC has launched a QA track to support the
competitive research on question answering, from 1999 (TREC8). The focus of TREC QA track is to
build a fully automatic open-domain question answering system, which can answer factual questions
based on very large document. Today, the TREC QA track [V0099][Voo00][Voo01] is the major large-
scale evaluation environment for open-domain question answering systems.

Most of the recent question answering systems [V0099][Voo00][Voo01] require sophisticated linguistic
knowledge or tools, such as parser, named-entity recognizer, ontology, WordNet, etc. However, at the
TREC10 QA track [Voo01], the best performing system just used many textual patterns [SS01]. The
power of textual patterns for question answering looks quite amazing and stimulating to us.

We describe herein a Web based pattern mining and matching approach to question answering. For each
type of questions, a lot of textual patterns can be learned from the Web automatically, using the TREC
QA track data as training examples. These textual patterns are assessed by the concepts of support and
confidence, which are borrowed from the data mining community. Given a new unseen question, these
textual patterns can be utilized to extract and rank the plausible answers on the Web. The performance
of this approach has been evaluated also by the TREC QA track data.

To illustrate our approach, we would like to use the question “Who was the first American in space?” as
a running sample in the following sections. This question was the No.21 test question in the TREC8 QA
track.

2 System Overview

Figure 1, system architecture.

As shown in Figure 1, the system entails two main functions, one is learning and the other is answering.
For both functions, the question has to be pre-processed by the transforming and recognizing module.

The answering part of the system relies on the textual patterns. A textual pattern can be in either of the
following two forms.

 Q <intermediate string> _A_ <boundary string>
 <boundary string> _A_ <intermediate string> _Q_

Here, _Q_ stands for the question key phrase and _A_ stands for the potential answer. The key phrase of
a question is a continuous sequence of words in that question, which represents the primary object or
event the question asking about. For instance, the key phrase of the sample question would be “the first
American in space”. A textual pattern actually describes the context of some potential answers to a
specific class of questions.

Such textual patterns can be learned using some question-answer pairs as training examples. For
instance, the correct answer to the sample question can be found in the string “In 1961, Alan Shepard
became the first American in space ……”, this observation suggests that the textual pattern “, _A_
became _Q_” can be used to answer similar questions like “Who was the first U.S. president?”, “Who
was the second man to walk on the moon?”, and so on.

The learning part of the system will take advantage of the TREC QA track data as training examples. In
each year’s competition, TREC organizers issue several hundred questions to test the participant systems,
and later release the regular expressions indicating the correct answers to each test question. Such TREC
questions along with their answer regular expressions are our training examples.

3 Algorithms
3.1 Transforming

The transforming algorithm attempts to guess how the answer to the question may appear in a target
sentence, i.e. a sentence that contains the answer, and then transforms the question to that format. We
hope there will be more chances to find the answer after transforming the question. Currently two
transforming methods are used.

For questions with an auxiliary do-verb and a main verb, the target sentence is likely to contain the verb
in the conjugated form rather than separate verbs. For instance, the answer to the question “When did
Nixon visit China?” would more likely to occur in the target sentence as “…… Nixon visited
China ……” rather than “…… did Nixon visit China ……”. So we transform the question by
conjugating the auxiliary do-verb and the main verb. To locate the main verb like “visit” in the question,
we have to parse the question using the MEI parser [Cha99]. To find the converted verb like “visited”,
we utilize PC-KIMMO [Ant90].

For questions with an auxiliary be-verb and a main verb (past particular), the target sentence is likely to
contain these two verbs continuously together. For instance, the answer to the question “When was the
telephone invented?” would more likely to occur in the target sentence as “……the telephone was
invented ……” rather than “……was the telephone invented ……”. So we transform the question by
moving the auxiliary be-verb to the place just before the main verb. Again the MEI-parser is used to
locate the main verb.

3.2 Recognizing
The recognizing algorithm determines the class of the question and the key phrase of the question. This
was done by finding the appropriate template of the question.

Currently, we have defined 22 question classes, and each class has several templates formulated as
regular expressions which indicate the possible appearance of this type questions. For instance, some of
the templates in the ACRONYM class are as the following.

What is _Q_
What is the meaning of _Q_
What the (?:acronym|abbreviation) _Q_ (?:stands for|means)
What _Q_ (?:stands for|means)
What the initials _Q_ (?:stand for|mean)
Q is (?:an|the) (?:acronym|abbreviation) for what
Q stands for what

3.3 Learning

Assume the set of QA examples is E . Each QA example (,)i i ie q rea= consists of two parts, the

question iq and the regular expression of its correct answer irea . The following algorithms can learn the

textual patterns of a specific question class c from the Web.

3.3.1 Construct Snippet Database

Given the QA examples of class c , { }() (,) | (,) ^ ()c
i i i i iE q rea q rea E class q c= ∈ = , the following

algorithm can automatically construct the snippet database of class c , ()cS .

For each () (), c
i iq rea E∈ , do {

Submit ()ikp q as a phrase along with the words in iq to a Web search engine, such as Google

(http://www.google.com/).
Grab the search result returned by the search engine.

Extract the text snippets from the search result.
For each snippet ijs , do {

Insert a special symbol “_<_” at the head of ijs .

Append a special symbol “_>_” at the tail of ijs .

Replace every ()ikp q with a special symbol “_Q_”.

Find the answer ia using the answer regular expression irea .

Replace every ia with a special symbol “_A_”.

Add ijs to ()cS .

}
}

For instance, the sample question “Who was the first American in space?” and its answer regular
expression “((Alan (B\.)?)?Shephard)” can be taken as a QA example of the WHO-IS class. The following
query will be submitted to Google, and then get the search result.

 “the first American in space” Who was the first American in space?

A small portation of the snippet database of the WHO-IS class is shown in Figure 2.

Figure 2, sample snippet database

Two special symbols “_<_” and “_>_” are used to simplify the algorithm, where “_<_” stands for the
head of the snippet and “_>_” stands for the tail of the snippet.

3.3.2 Discover Textual Patterns

Given the snippet database of class c , ()cS , the following algorithm can automatically discover the
textual patterns of class c , ()cP .

For each ()c
ijs S∈ , do {

If (ijs contains both “_Q_” and “_A_”) then {

Extract the textual pattern kp from the snippet using the following two regular

expressions:
(\b_Q_\b(.*?)\b_A_\b\s*(_>_|\W|(\w+)))
((_<_|\W|(\w+))\s*\b_A_\b(.*?)\b_Q_\b)

If (kp is not in ()cP yet) then Add kp to ()cP .

}
}

Some of the discovered textual patterns of the WHO-IS class is shown in Figure 3.

……
< in mind that Alan Shepard was _Q_, not the first man. _>_
< John Glenn is not picked to be _Q_. _>_
< Alan Shepard becomes _Q_. _>_
< Then on 5 May 1961, less than a month after the Gagarin mission, Alan Shepard became _Q_.
>
< with general relativity theory to follow, in 1905 60 Yuri Gagarin became the first man in space
in 1961 66 Alan Shepard became _Q_ in Yahoo! _>_
< _Q_ was Alan Shepard, launched on May 5th Sea and Sky: Space Exploration 1961 - 1970. _>_
……

Figure 3, sample discovered textual patterns

3.3.3 Assess Textual Patterns

Given the textual patterns of class c , ()cP , and the snippet database of class c , ()cS , the following
algorithm can automatically assess the textual patterns in ()cP .

For each textual pattern ()c
kp P∈ , do {

Translate the textual pattern kp into a regular expression ()kre p , the special symbol “_A_” are

replaced by “(.*?)”, means this part can be matched by any string.

Search ()kre p in ()cS .

Let X denote the set of snippets which can match ()kre p .

Let Y denote the set of snippets which can not only match ()kre p , but also the string

corresponding to the “(.*?)” part is just “_A_ “.

()
support()k c

Y
p

S
= , confidence()k

Y
p

X
=

If support()kp is less than the threshold supportt , then remove kp from ()cP .

If confidence()kp is less than the threshold confidencet , then remove kp from ()cP .

}

In fact, a textual pattern can be considered as an association rule “context => answer”. The concepts
support and confidence are borrowed from the data mining community.

Some of the assessed textual patterns of the WHO-IS class is shown in Figure 4.

Figure 4, sample assessed textual patterns

3.4 Answering
Having the assessed textual patterns of each question, the following algorithm can be employed to
answer a new unseen question.

For a new question newq , determine its class c and its key phrase ()newkp q , by transforming and

recognizing algorithms.

……
, _A_ became _Q_
< _A_ was _Q_
Q was _A_,
A made history as _Q_
by _A_ (_Q_
Q , _A_ _>_
……

…… confidence
, _A_ became _Q_ 0.09
< _A_ was _Q_ 0.11
Q was _A_, 0.05
< _A_ made history as _Q_ 1.00
by _A_ (_Q_ 0.66
Q , _A_ _>_ 0.14
……

Submit ()newkp q as a phrase along with the words in newq to a Web search engine, such as Google

(http://www.google.com/).
Grab the search result returned by the search engine.
Extract the text snippets from the search result.
For each snippet js , do {

Insert a special symbol “_<_” at the head of js .

Append a special symbol “_>_” at the tail of js .

Replace every ()newkp q with a special symbol “_Q_”.

For each textual pattern ()c
kp P∈ , do {

Translate the textual pattern kp into a regular expression ()kre p , the special symbol

“_A_” are replaced by “(.*?)”, means this part can be matched by any string.
If js can match ()kre p , then {

Take the string corresponding to the “(.*?)” part as a plausible answer jka .

If (jka is not in ()qA yet) then {

 Add jka to ()qA

Let confidence() confidence()jk ka p=

}
else {
 Increase confidence()jka by confidence()kp

}
}

}
}

Remove the unreasonable answers in ()qA using the stop-answers list and class-specific filters.

Sort all the found answers in ()qA by their confidence value.

Return the ordered top-N answers in ()qA .

For instance, the answer to the sample question can be extracted from the snippet “Alan Shepard was the
first American in space ……” with confidence 0.11 using a textual pattern of the WHO-IS class “_<_
A was _Q_”.

The list of stop-answers contains the strings which have no chance to be a correct answer in our opinion,
such as “he”, “today”, “http”, etc. And for each class of questions, we apply a class-specific filter which
can help to remove the answers not for this class, e.g., a date class filter rejects a location string even it
matches the textual pattern.

4 Experiments
Several experiments have been done to evaluate the performance of this approach, using the data from
TREC8, TREC9 and TREC10. The questions with typo mistakes, the definition style questions like
“Who is Colin Powell?“, the questions which are syntactic rewrites of earlier questions (TREC9 test
questions No.701-893), and the questions with no associated answer regular expressions have been
removed from the data set. Note all the Web search results were retrieved from Google in the period
July -- August 2002.

Test Data t# Train Data e# r# c# MRR_all MRR_ret
TREC8 196 TREC9,10 757 93 52 0.22 0.46
TREC9 438 TREC10,8 515 282 155 0.27 0.42
TREC10 319 TREC8,9 634 230 120 0.28 0.39
TREC8,9,10 953 TREC8,9,10 953 634 509 0.53 0.79

Table 1, the performance of this approach on TREC8, TREC9 and TREC10 questions.

The experiment results are shown in Table 1. Here t# means the number of test questions, e# means the
number of training examples, r# represents the how many questions the system has returned some
answers for, c# represents how many questions the system has correctly answered. The MRR (Mean
Reciprocal Rank) metric was used in TREC8, TREC9 and TREC10. Here MRR_all represents the MRR
score over all test questions, while MRR_ret represents the MRR score over the questions which the
system has returned some answers for.

The MRR score of this approach is not as high as that of the best question answering system in TREC.
This discrepancy is due to many reasons. One important factor is that the answer regular expressions
provided by TREC are quite limited, many correct answers such as “Alan B. Shepard, Jr.” are judged
wrong since they do not occur in the TREC specified document collection. Another interesting issue is
time, the correct answers to some questions like “Who is the U.S. president?” will change over time.
The Web is also messier than the TREC document collection.

This approach works quite well on simple questions, e.g. questions about ACRONYM, AUTHOR,
BIRTHDATE, etc. The overall MRR score (MRR-all) for AUTHOR questions in TREC8 are above
0.55, while using the AUTHOR questions and answers in TREC9 and TREC10 as training examples.
The performance of LAMP will dramatically drop down when the length of the question becomes longer,
for instance, a TREC8 question averagely contains 9.93 words, but a correctly answered TREC8
question averagely contains 6.75 words.

The performance of this approach on TREC11 questions is as follows.

The above experiment results imply that this approach has high precision but low recall, i.e., this
approach prefers "no answer" rather than "wrong answer". We think this property is good because
"wrong answer" is usually worse than "no answer". And, this property allows this approach to be easily
augmented with other approaches.

To increase recall for our TREC 11 entry, we augmented this approach with a simple answer extractor
based on Support Vector Machines (SVM) [CS00] trained using features constructed from words in the
question, words in the candidate sentence and the POS (Part-of-Speech) tags of words neighboring a
candidate exact answer. To find a supporting document, we return the highest ranked document (in the
list returned by the organizers) that contains the answer returned by the system.

The performance of the hybrid system on TREC 11 questions is as follows.

CWS (Confidence Weighted Score): 0.396
Precision of recognizing no answer is 0 / 2 = 0.000
Recall of recognizing no answer is 0 / 46 = 0.000

CWS (Confidence Weighted Score): 0.458
Precision of recognizing no answer is 39 / 293 = 0.133
Recall of recognizing no answer is 39 / 46 = 0.848

5 Conclusion
This approach distinguishes itself by its simplicity. It just uses the snippets in the Web search results,
since it is time-consuming to download and analyze the original web documents. It does not require any
sophisticated natural language processing on snippets, and does not need any advanced data structure,
just simple hash table is enough. Because of this simplicity, LAMP is very efficient, which makes it
perfect for online question answering.

One limitation of this approach is that one textual pattern can include only one question key phrase in
the current stage. It does not work for the questions having multiple key phrases, possibly apart from
each other. For example, to answer the question “How many calories are there in a Big Mac?”, it would
be better to use two question key phrases, “calories” and “Big Mac”. Another drawback is that the
textual patterns cannot handle long-distance relationships between the question key phrase and the
answer. For example, the textual pattern “_Q_ became _A_,” cannot locate the answer in the text snippet
“Alan Shepard, who in 1961 became the first American in space and ……”. However, the abundance
and variation of the Web information makes it feasible to find answers on the Web with high probability
through this approach, because the factual knowledge is usually replicated across the Web, expressed in
many different forms [BLB+01].

References
[Ant90] E. L. Antworth. PC-KIMMO: a two-level processor for morphological analysis. Dallas,

TX: Summer Institute of Linguistics, 1990.

[Cha99] E. Charniak. A Maximum-Entropy-Inspired Parser. Technical Report CS-99-12, Brown
University, Computer Science Department, August 1999.

[CS00] C. Cristianini and J. Shawe-Taylor. An Introduction to Support Vector Machines.
Cambridge University Press, Cambridge, UK, 2000.

[BLB+01] E. Brill, J. Lin, M. Banko, S. Dumais, and A. Ng. Data-Intensive Question Answering. In
In Proceedings of the 10th Text Retrieval Conference (TREC10),, pp.183-189, NIST,
Gaithersburg, MD, 183- 189, 2001.

[SS01] M. M. Soubbotin and S. M. Soubbotin. Patterns of Potential Answer Expressions as
Clues to the Right Answer. In Proceedings of the 10th Text Retrieval Conference
(TREC10), pp. 175- 182, NIST, Gaithersburg, MD, 2001.

[Voo99] E. Voorhees. The TREC-8 Question Answering Track Report. In Proceedings of the 8th
Text Retrieval Conference (TREC8), pp. 77-82, NIST, Gaithersburg, MD, 1999.

[Voo00] E. Voorhees. Overview of the TREC-9 Question Answering Track. In Proceedings of the
9th Text Retrieval Conference (TREC9), pp. 71-80, NIST, Gaithersburg, MD, 2000.

[Voo01] E. Voorhees. Overview of the TREC 2001 Question Answering Track. In Proceedings of
the 10th Text Retrieval Conference (TREC10), pp. 157-165, NIST, Gaithersburg, MD,
2001.

